pgµç×Ó¹ÙÍø

±±¾©»ùÒò×éËù£¨¹ú¼ÒÉúÎïÐÅÏ¢ÖÐÐÄ£©µÈÏàÖúÑз¢µ¥Ï¸°ûºÍ¿Õ¼äת¼×éÖл·ÐÎRNAÉî¶ÈѧϰËã·¨

»·ÐÎRNAÊÇÒ»Àà¹ã·º±í´ïµÄ·Ç±àÂëRNA£¬ÓнϸߵÄϸ°ûÀàÐͼ°×éÖ¯±í´ïÌØÒìÐÔ£¬ÔÚÆ÷¹Ù·¢Óý¼°Ö×Áö±¬·¢µÈÀú³ÌÖÐÆð×ÅÖØÒªµÄµ÷¿Ø×÷Óá £»·ÐÎRNAÓÉ3¡®¶ËµÄÊÜÌåλµãºÍ5¡¯¶ËµÄ¹©Ìåλµã¹²¼ÛÁ¬½ÓÐγÉ£¬ÕâÒ»Àú³Ì±»³ÆΪ·´Ïò¼ô½Ó£¬È»¶øÓÉÓÚȱÉÙpoly(A)⣬»·ÐÎRNAÎÞ·¨±»¾­¹ýpolyA¸»¼¯µÈת¼×齨¿â·½·¨ÓÐЧ²¶»ñ¡£Òò´Ë£¬»·ÐÎRNAµÄ±í´ïÐÅÏ¢ÔÚ¾ø´ó²¿·Öµ¥Ï¸°ûÒÔ¼°¿Õ¼äת¼×éÊý¾ÝÖÐȱʧ¡£ÎªÁË»ñµÃ¸»ºñµÄµ¥Ï¸°û¼°¿Õ¼äˮƽµÄ»·ÐÎRNA±í´ïÐÅÏ¢£¬ÐèÒªÑз¢ÐÂÐÍ»·ÐÎRNA±í´ïÔ¤²âËã·¨¡£

pgµç×Ó¹ÙÍø£¨¹ú¼ÒÉúÎïÐÅÏ¢ÖÐÐÄ£©¸ßÔ¶ÍŶÓÓëpgµç×Ó¹ÙÍø±±¾©ÉúÃü¿ÆѧÑо¿ÔºÕÔ·½ÇìÍŶÓÁªºÏÑз¢ÁËÉî¶ÈѧϰģÐÍCIRI-deep£¬ÒÔ׼ȷԤ²â²î±ðÑù±¾¼äµÄ²î±ð¼ô½Ó»·ÐÎRNA¡£¸ÃÄ£ÐÍ´Ó»·ÐÎRNAµ÷¿Ø»úÖƽǶȳö·¢£¬ÕûºÏÁË3527¸ö»·ÐÎRNAÌØÒìµÄ˳ʽԪ¼þÒÔ¼°1499¸öÑù±¾ÌØÒìµÄ·´Ê½Òò×Ó×÷ΪÊäÈëÌØÕ÷£¬ÇÒ²»ÒÀÀµÓڹŰåµÄ·´Ïò¼ô½ÓÐźÅʶ±ð£¬¿ÉÒÔÔÚÈÎÒâת¼×éÑù±¾¼äÔ¤²â²î±ð¼ô½ÓµÄ»·ÐÎRNA¡£ÆÀ¹À½á¹û±êÃ÷£¬CIRI-deep¿ÉÒÔʵÏÖ¶àÖÖת¼×é²âÐòÊý¾ÝÖвî±ð¼ô½Ó»·ÐÎRNAµÄ¿É¿¿Ô¤²â£¬²¢ÔÚµ¥Ï¸°û¼°¿Õ¼äˮƽʵÏÖϸ°ûÀàÐÍÌØÒì»·ÐÎRNAµÄ׼ȷ½âÎö£¬¾ßÓй㷺µÄÓ¦Óó¡¾°¡£

Ñо¿ÍŶÓÊ×ÏÈ´Ó397¸öÉî¶È²âÐòµÄȫת¼×飨total RNA-seq£©Ñù±¾ÖÐʶ±ðÁËÁè¼Ý2500Íò¸ß¶È¿ÉÐŵĻ·ÐÎRNA²î±ð¼ô½Óʼþ¡£ÓÉÓÚÕâЩ¼ô½ÓʼþÁýÕÖÁË25¸öÈËÌå×éÖ¯£¬Ê¹ÓÃËüÃÇ×÷ΪѵÁ·¼¯£¬Ê¹CIRI-deep¾ßÓÐÁ¼ºÃµÄ·º»¯ÐÔÄÜ¡£CIRI-deepÔÚ²âÊÔÊý¾Ý¼¯ÉϵÄAUROCÖµµÖ´ïÁË0.906£¬²¢ÇÒ¿ÉÒÔ׼ȷԤ²âÀ´×Ô·ÇѵÁ·¼¯²¡ÀíÌõ¼þÓëÕý³£Ñù±¾¼äµÄ»·ÐÎRNA²î±ð¼ô½Ó¡£±ðµÄ£¬ÔÚµÍÉî¶È²âÐòµÄת¼±¾ÖУ¬CIRI-deep¶Ô²î±ð»·ÐÎRNAµÄÔ¤²âЧ¹ûÓÅÓÚ»ùÓÚreadsÊýµÄͳ¼Æ¼ìÑéÒªÁì¡£

ΪÁ˽âÊÍCIRI-deepµÄÔ¤²âÔ­Àí£¬Ñо¿ÍŶÓÑз¢ÁËÒ»ÖÖÉî¶Èѧϰ¿É½âÊÍÐÔÆÊÎö¿ò¼ÜAdapted Integrated Gradient£¨AIG£©£¬ÒÔÁ¿»¯ÆÊÎö×éÖ¯ÌØÒì»·ÐÎRNAµÄµ÷¿ØÒòËؼ°ÆäТ¾´¡£½á¹û±êÃ÷£¬Ïà½ÏÓÚ»ùÒòÐòÁнṹµÈ˳ʽԪ¼þ£¬RNA½áºÏÂѰ׵ȷ´Ê½Òò×ӵıí´ïˮƽ¶ÔÔ¤²â׼ȷÐÔµÄТ¾´¸ü´ó£¬ÇÒ¾ßÓиüÇ¿µÄ×éÖ¯ÌØÒìÐÔ¡£¸ÃÆÊÎö¿ò¼ÜÑéÖ¤ÁËÒÑÖªµÄ»·ÐÎRNA¼ô½ÓµÄµ÷¿ØÒòËØ£¬Èç¼ô½Óλµã£¬ÄÚº¬×ÓÇøÓòµÄAluÔª¼þ£¬FUSÂѰ׵ıí´ïµÈ£¬Ò²ÌáʾÁË֮ǰδ·¢Ã÷µÄDZÔÚµ÷¿ØÒò×ÓÈçNOVA2£¬KHDRBS3µÈ¶Ô»·ÐÎRNA¼ô½ÓµÄÓ°Ïì¡£

ΪÁË´ÓpolyA¸»¼¯²âÐòµÄµ¥Ï¸°ûÒÔ¼°¿Õ¼äת¼×éÊý¾ÝÖÐÍÚ¾ò»·ÐÎRNA±í´ïˮƽ²î±ð£¬Ñо¿ÍŶӽøÒ»²½ÀûÓÃpolyAÊý¾ÝѵÁ·ÁËCIRI-deepAÄ£ÐÍ¡£½á¹û±êÃ÷£¬CIRI-deepAµÄÔ¤²âÌåÏÖ´ó·ùÁè¼ÝÖ±½ÓʹÓÃpolyAÊý¾ÝÍƶϲî±ð¼ô½Ó»·ÐÎRNAµÄЧ¹û¡£ÔÚÄÔ½ºÖÊÁöÊý¾Ý¼¯ÉÏÓ¦ÓÃCIRI-deepA±êÃ÷¸ÃÄ£ÐÍ¿ÉÓÐЧԤ²âÖ×Áöϸ°ûȺÌåºÍ½¡¿µÏ¸°ûȺÌåÖ®¼äµÄ²î±ð¼ô½Ó»·ÐÎRNA¡£Ñо¿ÍŶÓÒ²½«CIRI-deepAÓ¦Óõ½ÁË10Xµ¥Ï¸°ûÊý¾Ý¼¯ÉÏ£¬×¼È·Ô¤²âÁ˲î±ðϸ°ûȺÌåµÄÌØÒì¸ß±í´ï»·ÐÎRNA¡£ÁíÍ⣬ÔÚ¿Õ¼äת¼×éÊý¾ÝÖУ¬CIRI-deepA¿ÉÓÃÓÚÔ¤²â¿Õ¼äÇøÓòÌØÒì¸ß±í´ïµÄ»·ÐÎRNA£¬²¢ÊµÏÖ¶Ô»·ÐÎRNA±í´ï½øÐпռäÇøÓòˮƽµÄ¿ÉÊÓ»¯¡£ÀûÓÃCIRI-deepAÔ¤²âµÄ¸ß¶ÈÌØÒì±í´ï»·ÐÎRNA£¬¿É½øÒ»²½½âÎö²î±ðÇøÓòµÄϸ°ûÀàÐÍ×é³É¡£

×ÛÉÏËùÊö£¬CIRI-deepÄ£ÐÍ¿ÉÓÐЧÓÃÓÚ¸÷ת¼×éÑù±¾¼äÍƶϲî±ð¼ô½Ó»·ÐÎRNA£¬¼«´óÍØÕ¹ÁË»·ÐÎRNAµÄÑо¿¹æÄ££¬Îª»·ÐÎRNAÑо¿ÌṩÁËеĸßЧÆÊÎöÒªÁ졣ͬʱ£¬CIRI-deepAÄ£ÐÍ¿ÉÒÔÌṩµ¥Ï¸°û¼°¿Õ¼äˮƽ»·ÐÎRNAµÄÓÐЧ½âÎö£¬ÎªÍÚ¾òϸ°ûÀàÐÍÌØÒìµÄ»·ÐÎRNA±ê¼ÇÎïÌṩÁËÖØÒªµÄÒªÁìѧ¹¤¾ß¡£

¸Ã½á¹ûÒÔ¡°CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning¡±ÎªÌ⣬ÓÚ2ÔÂ2ÈÕÐû²¼ÓÚAdvanced Science?ÆÚ¿¯¡£pgµç×Ó¹ÙÍø£¨¹ú¼ÒÉúÎïÐÅÏ¢ÖÐÐÄ£©¸ßÔ¶Ñо¿Ô±ÒÔ¼°±±¾©ÉúÃü¿ÆѧÑо¿ÔºÕÔ·½ÇìÑо¿Ô±Îª±¾ÎĵÄͨѶ×÷Õߣ¬±±¾©»ùÒò×éÑо¿Ëù²©Ê¿Ñо¿ÉúÖÜ×ÓÝպͱ±¾©ÉúÃü¿ÆѧÑо¿ÔºÕŽðÑô¸±Ñо¿Ô±Îª±¾ÎĵÄÅäºÏµÚÒ»×÷Õß¡£¸ÃÑо¿»ñµÃÁ˹ú¼ÒÖصãÑз¢¼Æ»®¡¢¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð¼°ÖпÆÔºÈ˲ŵÈÏîÄ¿µÄ×ÊÖú¡£

PGµç×Ó¡¤(Öйú)¹Ù·½ÍøÕ¾

»ùÓÚÉî¶ÈѧϰµÄ»·ÐÎRNA²î±ð¼ô½ÓÔ¤²âËã·¨CIRI-deep


ÂÛÎÄÁ´½Ó

CIRI-deepÔÚÏß²âÊÔ°æ


¸½¼þÏÂÔØ£º
ÍøÕ¾µØͼ
ÓÑÇéÁ´½Ó£ºng28ÄϹ¬  ±ØÒ»ÌåÓý  ÃÀʨ¹ó±ö»á  ÀûÀ´¹ú¼Êag  ÄϹ¬28  ½ðÄê»á  ¾ÅÓλáJ9  918²©ÌìÌÃÏÂÔØ  ½ðÄê»á  ¾ÅÖÝ¿áÓΠ pgµç×Ó  agÕæÈ˹ú¼Ê  pgµç×Ó  ¿­·¢K8Æì½¢Ìü  ÃÀʨ¹ó±ö»á